Cairo University
Faculty of Engineering
Department of Electronics and
Electrical Communications
Engineering

## Course Specifications

| Program(s) on which this course is given: |  |  |  | Electronics \& Electrical Communications Engineering |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Major or Minor element of programs: |  |  |  | Major |  |  |  |  |
| Department offering the program: |  |  |  | Electronics \& Electrical Communications Engineering |  |  |  |  |
| Department offering the course: |  |  |  | Mathematics and Engineering Physics |  |  |  |  |
| Academic year / Level: |  |  |  | Third |  |  |  |  |
| Date of original/modified specification approval: |  |  |  | 2003/ |  |  |  |  |
| Semester of cours | offering: |  |  | First |  |  |  |  |
| A- Basic Information |  |  |  |  |  |  |  |  |
| 1.a. Title: | Mathematics ( |  |  | Co | MTH |  |  |  |
| 2. Units/Credit hours per week: | 2.a. Lectures | 3 | 2.b. Tutorial | 1 | 2.c. Practical | 0 | 2.d. Total | 4 |

## B- Professional Information

At the end of this course, the student should be able to:

- Perform statistical inference from data.
- Compute probability of errors associated with data communication.

1. Overall Aims of the Course:

- Compare between alternatives based on probability measures.
- Deal with some applications involving special functions.
- Solve different types of Partial Differential Equations (PDEs).
- Analyze and solve some applications using PDEs in electromagnetic waves.
a) Knowledge and Understanding (1.1)

1. Describe all possible outputs of any statistical experiment and calculate their count.
2. Calculate the probability of any event described on a statistical experiment.
3. Recognize the type of the random variable of any statistical experiment and calculate its different measures.
4. Calculate different statistical measures of any function of random variables.
5. Define and describe the basic types of PDEs.
6. Solve different integrals using special functions.
7. Intended Learning Outcomes of Course (ILOs):
b) Intellectual Skills (3.1)
8. Being able to describe an engineering problem as a statistical experiment and compute its different measures.
9. Being able to change the order of multiple integration, and transform it into cylindrical or spherical coordinates
10. Classify and solve PDEs, and solve difficult integrals using special functions.
c) Professional and Practical Skills (2.1)
11. Calculate the efficiency of production of a machine based on the number of defective products produced.
12. Quality control of any production machine by studying the influence of its different parameters.
13. Compare different alternatives cost-wise based on statistical data collected for each alternative.
14. Calculate probability of errors of digital communication channels.
15. Solving electromagnetic wave equations and find the electric and magnetic field.

|  | d) General and Transferable Skills |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1. Acquire Computational and communications skills (4.2, 4.7). <br> 2. Work in a group (4.7). |  |  |  |
| 3. Contents |  |  |  |  |
| Topic |  | Total hours | rs ${ }^{\text {rectures }}$ | Tutorial/ Practical |
| Set Theory |  | 6 | 3 | 1 |
| Counting |  | 6 | 3 | 1 |
| Introduction to Probability |  | 6 | 3 | 1 |
| Conditional Probability |  | 6 | 3 | 1 |
| Random Variables |  | 11 | 6 | 2 |
| Some Discrete Random Variables |  | 11 | 6 | 2 |
| Some Continuous Random Variables |  | 11 | 6 | 2 |
| Function of Random Variables |  | 6 | 3 | 1 |
| Special Functions |  | 11 | 6 | 2 |
| Partial Differential Equations |  | 11 | 6 | 2 |
| 4. Teaching and Learning Methods | Lectures (Y) | Practical Training/ Laboratory (N) |  | Seminar/Workshop (N) |
|  | Class Activity (Y) | Case Study (Y) |  | Projects (N) |
|  | E-learning (N) | Assignme | ments /Homework (Y) | Other: |
| 5. Student Assessment Methods |  |  |  |  |
| 5.a. Method |  |  | To assess (with reference to the ILOs) |  |
| - Discussions and reports |  |  | d1, d2 |  |
| - Assignments ${ }^{\text {a }}$ |  |  | a1-a6, b1-b3, c1-c5 |  |
| - Quizzes ${ }^{\text {- }}$ |  |  | a 1 - a6, b1-b3, c1-c5 |  |
| - Midterm a1 |  |  | a 1 - a6, b1-b3, c1-c5 |  |
| - Final ${ }^{\text {a }}$ |  |  | a1-a6, b1-b3, c1-c5 |  |
| 5.b. Assessment Schedule |  |  | Week |  |
| - Discussion ${ }^{\text {- }}$ |  |  | weekly |  |
| - Assignments and Quizzes $\quad$ B |  |  | Bi-weekly |  |
| - Midterm 8 |  |  | 8 |  |
| - Report |  |  | 12 |  |
| - Final |  |  | 15 |  |
| 5.c. Weighting of Assessments |  |  |  |  |
| - Assignments and reports |  |  | 5\% |  |
| - Quizzes and discussion |  |  | 10\% |  |
| - Midterm |  |  | 15\% |  |
| - Final |  |  | 70\% |  |
| - Total |  |  | 100 \% |  |
| 6. List of References |  |  |  |  |
| 6.a. Course Notes: Lecturer notes (in English). |  |  |  |  |
| 6.b. Essential Books (Text Books) |  |  |  |  |
| - "Probability and Statistics for Engineers and Scientists" by Ronald E. WALPOLE, Raymond H. MEYERS, an |  |  |  |  |


| Sharon L. MEYERS, 6th edition Prentice-Hall, 1998. |  |
| :--- | :--- |
| 6.c. Recommended Books. |  |
| •  <br> edition, John Wiley Statistics and Probability for Engineers" by Dons, 2003  <br> 6.d. Periodicals, Web Sites, ... etc: N/A.  <br> 7. Facilities Required for Teaching and Learning  <br> White board, data show, screen, projector.  <br> Course Coordinator:  Prof. Dr. Ibrahim Gomaa |  |
| Head of Department: | Prof. Dr. Ahmed Alaa |
| Date: |  |

